# Reference Data

## **Equations**

## Typical 3-Phase Wiring Diagrams and **Equations for Resistive Heaters**

#### Definitions

#### For Both Wye and Delta (Balanced Loads)

V<sub>D</sub> = Phase voltage

V<sub>L</sub> = Line voltage

lp = Phase current

IL = Line current

 $R = R_1 = R_2 = R_3 =$ Resistance of each branch

W = Wattage

#### Wye and Delta Equivalents

 $W_{DELTA} = 3 W_{WYE}$  $W_{DOGLTA} = \frac{2}{3} W_{DELTA}$ 

 $= \frac{1}{2} W_{wrs}$ 

#### 3-Phase Wye (Balanced Load)



#### **Equations For Wye Only**

 $\begin{array}{l} I_{p} = I_{L} \\ V_{p} = V_{L}/1.73 \\ W_{MYS} = V_{L}^{2}/R = 3(V_{F}^{2})/R \\ W_{MYS} = 1.73 V_{L}I_{L} \end{array}$ 

## 3-Phase Open Wye (No Neutral)



#### Equations For Open Wye Only

 $\begin{array}{l} I_{DD} = I_{LD} \\ V_{PD} = V_L/2 \\ W_{DMYS} = \frac{1}{2} \left(V_L^2/R\right) \\ W_{DMYS} = 2 \left(V_D^2/R\right) \\ W_{DMYS} = V_L I_{LD} \end{array}$ 

## 3-Phase Delta (Balanced Load)



#### **Equations For Delta Only**

lp = l<sub>L</sub>/173 V<sub>p</sub> = V<sub>L</sub> W<sub>DELTA</sub> = 3(V<sub>L</sub><sup>2</sup>)/R W<sub>DELTA</sub> = 1.73 V<sub>L</sub>L

## 3-Phase Open Delta



#### **Equations For Open Delta Only**

 $V_P = V_L$   $I_{PO1} = I_{PO2} = I_{LO2}$   $I_{LO2} = 1.73 I_{PO1}$   $W_{ODELTA} = 2 (V_L^2/R)$